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SOBRE LA NATURALEZA DE LA MATEMÁTICA Y 
SU PAPEL EN LA CIENCIA Y LA SOCIEDAD

ON THE NATURE OF MATHEMATICS AND ITS 
ROLE IN SCIENCE AND OUR SOCIETY

Dr. Roger Coziol* 

Resumen
La lógica y la matemática son los productos naturales del desarrollo de la 
inteligencia. Si entendemos la matemática como el simbolismo de las acciones 
del sujeto sobre el objeto, entonces, tanto la verdad en la matemática como 
en la física tienen el mismo origen: se basan en nuestras interacciones con la 
realidad. Esto explica por qué no importa cuán abstracta es la matemática; 
siempre habrá una parte que se aplicará a la descripción física del mundo. La 
verdadera utilidad de la matemática reside en cambiar la mente revelando 
nuevos aspectos de la realidad y extender nuestra conciencia.

Abstract
Logic and mathematics are the natural consequences of the development of 
intelligence. If we conceive mathematics as the symbolism of the actions of 
the subject on the object, then the truths in physics and mathematics have 
exactly the same origin: they emanate from our interactions with reality. 
This explains why however abstract mathematics becomes, there will always 
be some branches of it that applies to the physical world. The real utility of 
mathematics is in changing our mind, by revealing new aspects of reality and 
extending our consciousness.
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Asking the right questions

W hat is mathematics and what is its usefulness for our society? During the middle ages 
the English natural philosopher Roger Bacon (ca. 1219-1292), who was also a Franciscan 
friar, considered the study of mathematics as essential, stating that “(…) he who is 

ignorant of it cannot know the other sciences or the things of this world” (Merzbach & Boyer, 2011, 
p. 223). On the same theme during the 17th century the Cambridge mathematician Isaac Barrow 
(1630-1677), whose work inspired Isaac Newton (1643-1727), described mathematics as, “(…) the 
unshaken foundation of sciences, and the plentiful fountain of advantage to human affairs” (Idem, 
p. 348). More recently, however, Uta Merzbach and Carl Boyer in their book about the history of 
mathematics described the activity of the mathematicians as “(…) the formulation of statements 
about abstract concepts that are subject to verification by proof” (Idem, p. 1). The differences 
between these three points of view are striking. While the last citation conceives mathematics as 
a pure abstraction, a creation of the mind, independent of any application, and a science by itself 
unrelated to other fields, the first two suggest mathematics is an intrinsic part of knowledge, with 
many practical utilities, and abstractions deeply anchored in the natural phenomena. But which 
view is the right one?

Comparing the histories of mathematics and science we do find a trend for mathematics to start 
from concrete bases, developing later on into more and more abstract forms. History also shows 
that the development of science and mathematics, during the 6th century BCE in Greece, seemed to 
have followed two separate paths. However, this separation was only apparent because almost 200 
years after science was created, and the religion erected by the Pythagorean around mathematics 
had crumbled on its own weight, the first sophisticated mathematical model of the solar system 
would be built in Plato’s Academy, almost out of the blue. Then later, during the 3rd century BCE, 
mathematics would reappear in the works of Archimedes (287-212 BCE) as the basis of his method 
in physics (Lloyd, 1973). This was just before science almost vanished during the Roman Empire, 
the Romans showing few interests in such “useless” activity.

So there is a huge gap in the historical documents that hides 
the tight connections between mathematics and science, and 
when science came back in force during the 16th century, 
mathematics was already playing the central role. In fact, we 
can confidently state that it was the fusion of mathematics and 
science during the Renaissance that produced the Scientific 
Revolution. This marked the creation of modern science and 
the beginning of a new way of seeing the world, on which our 
present society would be build. Since then, the connection 
between mathematics and science has never ceased to grow, 
which has led the great Russian mathematician Nikolai Ivanovich 
Lobachevsky (1793-1856) to claim in the 19th century that, 
“There is no branch of mathematics, however abstract, which 
may not some day be applied to phenomena of the real world” 
(Merzbach & Boyer, 2011, p. 483). Understanding why this is so 
should help us clarify what is the nature of mathematics and 
better understand is usefulness for our society.
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Why was science created and why mathematics, at first, was not 
part of it
Science is a creation of the Greeks (Lloyd, 1970). It started during the 6th century BCE with the 
work of Thales of Miletus (624-546 BCE). Its goal was to find explanations of the natural phenomena 
based on reason. But why was science invented in Greece and at this particular time is a question 
that the historians have still difficulties in clarifying. Usually they point to the fact that the Greek 
economy and civilization were booming, which led to the foundations of large city-states, where 
most citizens were liberated from the basic needs of survival and the anxiety that comes with it. 
Consequently, they were free to pursue more mundane activities like, in particular, philosophizing 
about the nature and causes of things. However, there is an alternative explanation that is much 
more practical as well as being fully consistent with the economic and social reality of the Greek 
culture at this epoch, and this would have to do with the creation of democracy.

Although Greece at the time of Thales was flourishing, the period was not a peaceful one, as the 
citizens were preoccupied in finding what would be the best way to run their cities. At first they 
experimented with two systems, the traditional kingship and tyranny. Note that tyranny did not 
have the pejorative connotation that we apply today to the term. In those days it consisted for the 
citizens in electing men of values as their political leaders. These men had high reputations, elevated 
moral conducts, and were unusually intelligent. Intelligence is a quality that always has been admired 
by humans, and such men (or women) always appeared in different civilizations to play the same 
specific role independent of politics: the medicine men, the priests or shamans. In Greece they 
were the seven sages,1 and Thales was one of them (Griffiths, 1996).

The sages were frequently consulted on important matters, and that includes politics. Some sages 
even became tyrants, usually with good results. But the problem was their successions, the sons of 
tyrants frequently turning despots, and noble despots turning tyrants. This is why democracy was 
invented. It was a remarkable organizational system, where the common people, “demos”, equally 
share the responsibility of the political power, “kratos”, regardless of their status (Raaflaub et al., 2008). 
But it was also sort of revolutionary, in conflict with ancestral traditions. In these conditions, it is 
not difficult to imagine that Thales, as a sage, already thought about the political situation in Greece, 
and the citizens would have been very much interested in knowing his opinion about democracy.

Here is the problem. The Greek tradition, like the traditions of many civilizations before them, was 
based on a mythology, which role is to make sense of the world, and the common belief was that 
things are the way they are because of the wills of the gods. Consequently, religion played a central 
role in Greek politics. In particular, any new law or change in the constitution of a city would have 
needed first to be approved by the oracle of Apollo (Miletus where Thales lived had its own oracle). 
But this tradition is awkward for two reasons. The first one is that the wills of the gods, whose 
motives were described as quasi-humans,2 were accepted by default to be arbitraries. The second 
reason is that what the gods wanted was supposed to be communicated to humans through signs 
in nature, which only the oracles could read and interpret. This gave a lot of weight to the social 
status of the oracles. Therefore, it was not surprising to find that very frequently their decisions 

1 See https://en.wikipedia.org/wiki/Seven_Sages_of_Greece, and references therein. 
2 Like we find in Homer’s poems Iliad and Odyssey or Hesiod’s poems Theogony and Work and Days, all written around 

the late 8th or early 7th century BCE.
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went against reason. For example, in 632 BCE slightly before 
Thales, the noble Cylon, based on the “revelations” of the oracle 
at Delphi, attempted to become tyrant of Athens. This was 
against the will of the demos, which causes men and women 
(the women playing a central role) to spontaneously revolt and, 
despite Cylon being supported by the forces of the tyrant of 
Megara, succeed in expulsing him from the city. That was one 
important move towards democracy (Raaflaub et al., 2008).

What was Thales opinion then? Considering the arbitrariness of the role of religion in politics, he 
proposed to verify whether such tradition was rightly founded. How would he do that? He thought 
that it could be possible to verify if there was any evidence for the interventions of gods in nature. 
His method was science (or natural philosophy, as it was known at the time). It consists in searching 
for alternative explanations to the natural phenomena based solely on reason. If a logical explanation 
exists for a phenomenon, then there is no need for the intervention of gods. And if it turned out 
that this applies to all the natural phenomena, then the role of the oracle would be superfluous, 
and humans would be free to decide their own destiny. That would support democracy.

This suggests that science was created with a practical purpose, which is to make sense of the 
world. Since this is the usual role of religions in our society, it elucidates why science is frequently 
perceived as a threat to priests. Many Greek philosophers were persecuted because of their 
“untraditional” views about nature. On the other hand, Hypatia of Alexandria (ca. 350-415 CE), 
one of the rare women doing science at the time, was not lynched by a Christian mob because of 
religion, but because of her influence on political matters (Watts, 2006).3 Obviously, by replacing 
religion, science becomes automatically important in politics. During his Egyptian campaign, Napoleon 
(1769-1821) was followed by an army of scientists,4 stating that this was, “(…) for the good of the 
nation” (which, shortly after, would become Napoleon himself). Another example is Lenin’s idea of 
communism, favoring science over religion as the foundation of society (Crowther, 1941). Contrary 
to the common belief, science is not a socially neutral activity.

This also applies to mathematics, although its role is more obscure. The idea of Thales in creating 
science was to replace myths with logic as a guide for actions in human affairs. This plan did not 
include mathematics because logic and mathematics were considered two different matters at 
the time. Moreover, concurrently with the development of physics, the Pythagoreans would give 
mathematics a mystical form (a new religion), clouding even more its connection with logic. However, 
such mysticism about mathematics was not something new, mathematics being at the source of all 
the mythologies in the first place.

3 Hypatia was counselor to Orestes, the Roman prefect of Alexandria, who was opposing the new Cristian bishop Cyril 
in a fight for political power.

4 They would discover the Rosetta stone, which is the key to decipher the Egyptian hieroglyphs. 
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Mathematics as the origin of all mythologies
Researches in neuroscience reveal that logic and mathematics are the natural consequences of 
the development of intelligence (Nieder, 2016). Since intelligence is the product of the activities of 
neurons, and neurons are found in all animals then it is not surprising to observe evidences of both 
intelligence and mathematical activities in them (Milius, 2016; Nieder, 2016). However, due to the 
higher complexity of its brain, there is one specific characteristic that makes humans unique: this is 
the only animal whose survival depends completely on its cultural behavior (Conroy & Pontzer, 2012). 

In paleoanthropology, culture is defined as a system of shared meanings, symbols, customs, beliefs 
and practices that are used to cope with the environment. An important trait of culture is that it 
is learned by imitation or teaching. Humans do that by sharing information through an elaborate 
system of communication that involves special structures in the brain related to symbolic thinking 
and language. Without these two capacities our social behaviors and interactions would be very 
much limited, and the formation of large organized social groups, on which our survival depends, 
would not be possible.5  

In humanoids, the first unambiguous evidences of symbolic 
behavior appeared with Homo Sapiens about 40 000 years ago. 
Those are sophisticated tools and weapons (bows, arrows and 
spear throwers), personal adornments, art (painted animals and 
humans on the walls of caves), and musical instruments like 
flutes.6 We also find female figurines and elaborate graves, which 
suggest mystical beliefs and ritual practices were common. Later 
on, we find weaved baskets, fire ceramics and potteries, all with 
different geometrical shapes and decorations. But the most 
direct evidences for mathematics are bones with non-random 
grouping of notches, the first records of counting (Simonyi, 
2012).  Although identifying what these notches count is not 
straightforward, the most probable explanation is that they are 
consecutive days in lunar calendars.7 And that leads us to the 
first discovery of mathematics about nature and the origin of 
mythologies.

By observing attentively the sky, we distinguish the sun, the moon, the stars, the Milky Way and the 
planets. They all move uniformly, except for the planets that move slightly more erratically (planets 
means wanderers). By “measuring” their positions the first thing that humans noted is that they 
define regular cycles in time. This phenomenon was recorded by different cultures in different places 
in the world. Two clear examples are the Mesopotamian (4000 BCE) and the Mayan in Mexico (from 
2000 BCE to 250 CE), who both developed numerical systems based on the number of days in a 
solar year; the latter chose 360, while the former adopted 60, which we still use to count minutes, 
seconds and angles. From these cycles our ancestors concluded that there is order in the universe. 

5 It is suggested that hunting and defense were the main environment pressures on humans to form large groups.
6 See https://en.wikipedia.org/wiki/Paleolithic_flutes, and references therein.
7 One good example is the Ishango bone. See https://en.wikipedia.org/wiki/Ishango_bone.
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The Greek philosophers later would identify this as “cosmos”, which means “beautiful order”, the 
contrary of chaos. 

Moreover, by comparing the cycles of the cosmos with events 
in their environments, humans found that they were correlated. 
Different plants grow, reproduce and die during specific periods 
within a year. Birds, fishes and herds of animals hunted by 
humans also migrate with regularity at precise epochs. A classic 
example is the flood of the Nile, which, once its cycle measured, 
brought great abundance to the ancient Egyptian civilization 
for at least 3 000 years. It is these correlations with the order 
of the cosmos that suggested there was a direct connection 
between what happens in nature and the destiny of humanity. 
This is where the notion of gods as the source of order dictating 
human affairs came from. It came from mathematics. Protagoras 
(490-420 BCE) would epitomize this mathematical metaphysics 
in a catchy formula, which is that “man is the measure of all 
things”.

And that brings us back to Pythagoras developing a “new” religion centered on mathematics. 
Historians are keen to remind us that at the same epoch as Pythagoras (570-495 BCE), three other 
charismatic personages also created new types of “religions”, Laozi around 531 BCE, Buddha (563-
480 BCE) and Confucius (551-479 BCE). However, the idea on which the Pythagorean religion was 
founded is unique, because it did not emanated from a meditation about the human condition and 
behavior (or moral), but rather from a mathematical reflection about nature itself. As such this belief 
is much more physical than metaphysical. What the Pythagoreans discovered was order at different 
scales than in the cosmos, and all expressible by numbers. They discovered natural crystals that 
show symmetrical geometric structures. They call them the five regular solids: the tetrahedron (4 
faces), the cube (6 faces), the octahedron (8 faces), the dodecahedron (12 faces) and the icosahedron 
(20 faces). As we know now, the shapes of crystals reflect the arrangement of their atoms at the 
macroscopic level (Ihde, 1984), so it is the interactions between atoms that are the source of this 
order. Of course, the Pythagoreans had no way to know that, but they also experimented with 
strings in tension, using musical instruments, and were able to quantify this order. They determined 
that harmonious notes are produced when the length of a string is in proportion of small integers; 
for example, the octave is the ratio 1:2, the fifth is 2:3, the fourth is 3:4, etc. (Simonyi, 2012, p. 50). 
It was from these observations and experiments that they concluded numbers are real objects and 
mathematics is the principle of all things.

They then started studying the numbers themselves, discovering various relations. Although many 
of these had no significance (this is more numerology than theory of numbers), some turned out 
to be valuable. For example, they considered the number 10 as special, because it is the sum of the 
first four integers: 10 = 1 + 2 + 3 + 4. Why 10? We do have 10 fingers, which is a natural base for 
a numerical system. But they also find 10 in other forms in nature. By arranging the 4 first integers 
in a triangle they form the “holy tetractys”, which is the basis for the tetrahedron. They also noted 
that the number 6, the number of faces of a cube, is the sum of its three divisors: 6 = 1 + 2 + 3, 
and call all numbers with this property perfect numbers. They also call prime a number that has no 
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other divisor than itself, like 2, 3, 5, 7, 11, 13, etc., and even find a connection between the prime 
and the perfect numbers: if the number (2n - 1), where n is an integer, is a prime number, then 
2n-1(2n -1) is an even perfect number. This rule is one of the theorems in Euclid’s Elements, which 
would appear 300 years later (Merzbach & Boyer, 2011).

But one of the most profound discoveries of the Pythagoreans was the incommensurability of 
numbers. This discovery would have such an impact on their intellect that it would destroy their 
religious order. It started with the theorem from which the name Pythagoras is known, which allows 
to calculate the size of the hypotenuse, h, of a right triangle from the sizes of its two legs, x and y, using 
the relation h2 = x2 + y2. The Egyptians and Mesopotamians knew about this theorem long before 
Pythagoras. However, it was the systematic study of numbers by the Pythagoreans that revealed its 
deeper meaning. They reasoned that if x and y are integers, so are their squares, and, consequently, 
the sum of integers should produce another integer (this is the closure of the addition operation). 
But, contrary to x and y, the root square of this sum is neither an integer nor a quotient of integers. 
There is a simple proof in one of Aristotle’s books (384-322 BCE) that confirms this result based 
on logic. Therefore, if the logic is correct, and the Pythagoreans assumption that numbers are real 
objects applies, this would point to a new trait of reality that was not perceived before, which is 
the incommensurability of nature. Of course, this is not how the Pythagoreans understood the 
problem, which they saw as a failure of their logic. Why? It is because the incommensurability of 
nature violates their belief of a simple, beautiful, rational order. So, man is not the measure of all 
things after all! 

Fortunately, this will not be the position adopted by the following mathematicians, although it 
will take them almost 2 000 years to make sense of what we now call “irrational numbers” (a 
term introduced by Euclid). By admitting irrational numbers as a reality, new sets of mathematical 
operations and constructions become possible, some of them leading, despite the higher level of 
abstraction, to a new understanding of matter and the universe. The Pythagoreans did not make 
much of the irrational numbers, but today physics would make no sense without them (π, the 
epitome of the irrational numbers, is ubiquitous in our understanding of nature).

To better grasp how revolutionary was this discovery we 
must examine how science and mathematics developed after 
Thales and the Pythagoreans. The program of Thales ran almost 
unabated during 200 years. History retained the works of at 
least ten physicists contributing to the project, showing that, 
despite being separated in space and time, this was really a 
collective effort, the followers criticizing the results of their 
predecessors, but also adding something new to the discussion. 
At the same time an almost equal number of men worked 
in developing mathematics,8 half of them being physicists 
themselves, and here again the effort was collective, deducing 
new consequences from previous propositions and constructing 
new ones. The number of mathematicians and scientists active 
during the pre-Socratic period was so great that it would be 

8 The Pythagoreans included women in their researches, but they disappeared with the sect. 

The number of 
mathematicians and 

scientists active during 
the pre-Socratic period 

was so great that it 
would be surpassed only 

after the Renaissance 
(which started in 1300). 



Entretextos LABOR DE PUNTO

37

surpassed only after the Renaissance (which started in 1300). The ideas proposed and discussed 
by the physicists were astonishingly moderns, ending up with the atomic theory, which proposes 
that matter is formed of indivisible particles in movement in the void (Leucipus of Miletus, ca. 435 
BCE and Democritus of Abdera ca. 410 BCE). In summary, concerning the main goal of science, the 
conclusion was that there is no evidence of any intervention of gods in nature.

However, in reaction to that bold conclusion there were also acute discussions about the validity 
of the information gathered through the senses. In part, these discussions were based on the 
notion of mathematical infinite (Zeno of Elea 490-430 BCE), but mostly they were founded on 
the mathematical logic exposed by the proofs of geometric propositions that were developed 
after Pythagoras. This last point formed the creed of the metaphysics of Plato (428-374 BCE), who, 
impressed by Pythagoras, believed that mathematical logic leads to the absolute truth, who he 
assumed was infinite and unchanging, and which he called the “divine”.

Although the reason why Plato adopted such a metaphysical 
belief is not clear to the historians, it probably has something 
to do with the Pythagoreans failure. Here is one possible 
explanation. The Pythagoreans thought that numbers are real 
things and the order, consequently, was in nature itself. This 
was consistent with their tradition and mythology, which is 
the cosmos. But then they discovered that contrary to their 
expectations the logic of mathematics, its rational, leads to 
a contradiction, irrational numbers. What Plato might have 
noticed, however, is that logic was not wrong, it was just pointing 
to a deeper view of reality beyond the appearances. So he 
concluded that the order was not in nature but in logic itself. 
Therefore, while Thales and the other physicists concluded, 
based on reason, that there is no evidence of the interventions 
of gods in nature, Plato (and Aristotle after him) was affirming 
the exact opposite, that the divine order is visible through 
logic. This is the message that will pass to the medieval scholars 
(thanks to the prolific work of Aristotle), and adopted by the 
early Christian church as a possible way to prove their faith 
using reason.9

The roots of mathematics in reality
What is the nature of the truth of logic in mathematics? In his book “A Cultural History of Physics” 
Kàroly Simonyi stated the following  “(…) according to Euclid (…) and later geometers, the [mathe-
matical] axioms were true because they could be immediately understood and were self-evident, 
requiring no further proof” (Simonyi, 2012, p. 12). Then he added that this differ from the way the 
truth in physics is reached,  “(…) the basic equations, or axioms, of the axiomatized subfields of 
physics (…) are true not because they can be immediately understood, but rather because the 

9 That program, however, would never work; explanations about nature based on the Bible leading to illogical statements. 
But that would also keep science alive.
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inferences drawn from them agree with reality (…)” (Idem). However, this contradicts the fact that 
the mathematics used in physics is the same as the mathematics developed by the mathematicians, 
whatever the level of abstraction. Moreover, it does not explain why mathematics always seems to 
anticipate physical reality, far beyond what is perceived by our senses. Two remarkable examples 
(but there are many others) are the discovery of non-Euclidean geometry by Bernhard Riemann 
(1826-1846), which led to Einstein’s General Relativity, and the highly abstract mathematical nature 
of quantum mechanics that led Dirac (1902-1984) to discover antimatter.

To help us understanding what are the differences of logic in mathematics and physics, what we 
need is to compare simple examples in each discipline. Let start with Euclid’s Elements, which is 
the most renowned mathematical work in history and a monument of logical mathematics. It is 
also extremely modern, agreeing with the definition of mathematics as a purely abstract activity. 
Euclid himself saw it in this way.  There is a story which reports that in response to a student who 
complained the study of geometry was useless, Euclid asked one of his slave to pay the student 
3 pence each time he study, “since he needs to make gain of what he learns” (Merzbach & Boyer, 
2011, p. 91).

Euclid’s work is a collection of definitions, postulates, and propositions (theorems and constructions) 
with mathematical proofs. It is composed of 13 books, covering elementary and solid geometry, the 
theory of numbers, and the incommensurable, for which he used the term “irrational”. In the first 
book we find five postulates in plane geometry, which truths, according to Euclid, are self-evident. 
The 1st one states that only one straight line-segment can be drawn between two points. Indeed, 
it is easy, drawing the line with a straightedge, to admit this is true without asking for a proof. And 
so it seems is the 2nd postulate, which states that the line-segment constructed in the 1st postulate 
can be extended into an infinite straight line. The 3rd postulate then states that if we use 1/2 this 
segment, we can draw a circle using a compass with one point fixed in the middle of the segment 
and the other rotating 360°. To each radius, r (or diameter = 2r), we associate one and only one 
circle. Then, if we trace two diameters of this circle perpendicular to each other, producing 4 right 
angles, and draw 4 segments between the points of contact of the diameters with the circle, h, 
we obtain 4 right angle triangles that are congruent, meaning one triangle can be obtained from 
another by a linear transformation that preserve the lengths (which is known as an isometry). Two 
such transformations are obvious in the construction of the 4 triangles, which are a rotation and 
a reflection. This is one way to verify the 4th postulate that all right angles are congruent.

As one can see, the “self-evidence” of the first four postulates 
comes from physical constructions. These are not abstract 
concepts, but descriptions of operations, experiences based 
on reality. This is how the Greeks developed their logic, by 
confirming the “truth” of their mathematical propositions 
based on real constructions, using a straightedge and a 
compass. However, the breakthrough is that once a postulate 
is accepted as true, then it can be used to construct different 
sets of propositions and theorems that are also true. One way 
to generalize this process is by keeping in abstract or algebraic 
forms the operations that the constructions represent. The way 
I described the 4th postulate, using isometry, is one example 
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operationally, the linear transformation becoming the congruence. This is an abstract construction 
based on reality.

One application of this abstraction process is the proof about the existence of irrational numbers. 
By construction, the two sizes of one right triangle we have drawn above are equals to the radius, 
r. Then using Pythagoras theorem, the hypotenuse h2 = r2 + r2 = 2r2. This is applying the rules 
of the mathematical operations on natural numbers. Then, assume h/r is a rational number, thus, 
h/r = p/q where p and q
of a rational number.

For our hypotenuse we thus get (h/r)2 = p2/q2 = 2 ⇒ p2 = 2q2. From this we conclude that p must 
be even, because p2 is an integer with common divisor 2 with q2

of an even number. A logical consequence is that since p/q has no common divisor and p is an 
even number, then q must be odd (not divisible by 2). So writing p in general term as an even 
number p =  2s , where s is any integer, and substituting we get 4s2 = 2q2. This means that q2 = 2s2 
suggesting that q
a logical contradiction, because a number cannot be even and odd at the same time. Here all the 
mathematical operations applied are true, so the logic is correct. The only thing that is false is the 

h/r is a rational number. 

If not a rational number then what? So logic leads to a new type of number, which is the irrationals. 
In the above demonstration, note that the numbers were all used in general terms, based on their 
operational forms, numbers being objects on which apply the logical rules consistent with the set of 
mathematical operations . The last operation is the square root            .
By accepting this operation as true (operational) we get the  ≈1.41421356... , which is not 
rational, but irrational. So what we did is to extend the set of operations on the integers, making 
them a subset of a larger set of numbers that today we call real numbers (one operation missing 
is subtraction {-}, which introduces 0 as an element of the larger real number set).

Let see now how mathematics is used in the experimental method of physics. When the science of 
Archimedes was rediscovered, it was clear that experimentation and mathematics were indisputable 

(abstract) activity consists in isolating the characteristics that best describe this phenomenon, 

similar to the abstraction process in geometry. The next move is empirical, consisting in repeating 
the same action by varying the parameters. This produces tables of measurements that are used to 
determine how the parameters varied in relation with each other. Due to the uncertainty of the 
measurement process the data are real numbers, and the tables are similar to abstract geometrical 
constructions. In fact, we can produce graphics with these tables on which geometrical rules would 
also apply, from which new logical relations could be discerned. But what is more useful is to express 
the whole experience in operational form (algebraically), such that new results could be predicted 
before doing any extra experiments, extending in this way the set of our actions possible on reality.

To take a concrete example, we use one case studied by Archimedes, which is the buoyancy 
phenomenon. The parameters are the weight, volume and density of an object (wo,Vo 0) , compared 
to the volume of the water displaced and its weight, from which we determine the density of 
water (wwd,Vwd, w). By varying these parameters empirically Archimedes found that when a body 
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is completely or partially immersed the water exerts an “upward force” on the body equal to the 
weight of the water displaced by the body. This is known as the buoyancy. The apparatus used for the 
measurements was a balance, following the physical principle that equal weights are in equilibrium. 
However, the novelty is that the object to be equilibrated was immersed in water, reducing its 
weight by an amount quantified by the balance. In operational form this experience is described as 
wb =wo  – wwd , where wb is the weight registered by the balance.

This experience introduces two new concepts. The first one is that the water displaced exert a 
force equals to the weight, implying that the weight is a force. But it would be Newton, almost 2 000 
years later, who would show the weight is a force equal to wo = mo 𝑔 , where the first parameter on 
the right is the mass (the quantity of matter) and the other is a constant of proportionality called 
the gravitational constant. When we use a balance the constant cancels out, such that balanced 
weights are really equal masses. Note that Archimedes was familiar with the concept of force, having 
experimented before with levers. But he did not had to express the force explicitly because like for 
the buoyancy the lever was also a case of equilibrium (the balance works on the principle of a lever).  

The second new concept in Archimedes experiment is the 
density. Empirically the weight of an object is found to be 
proportional—in a specific way—to its volume, V.  We can write 
the relation as wo = mo 𝑔 = 𝜌oVo 𝑔, where 𝜌o is the density, 𝜌o = 
mo/Vo . When we replace these relations in the formula for the 
buoyancy we get wb = wo – wwd = 𝜌oVo 𝑔 – 𝜌wVwd 𝑔 , which is 
equal to 0 for an object that floats, implying that 𝜌oVo = 𝜌wVwd .     
And here is one clear result that cannot have been deduced 
from the mathematical logic, which is that the volume of water 
displaced must then be equal to the volume of the object 
when totally immersed. The legend said that when Archimedes 
realized this fact, he was taking a bath and he got so excited 
by his discovery that he jumped out of it, running nude in the 
streets of Syracuse shouting “eureka” (I have found it).

So Simonyi was right by claiming that the truth in physics is 
empirical, it comes from constraints on our interactions with 
reality. However, he was wrong in concluding that the truth in 
mathematics has a different origin, since it was the abstract 
mathematical-operator form that led to the discovery of the 
physical constraint in the first place. Once the constraints are 
included, mathematical logic predicts new physical results that 
can be verified by experimentations. For example, although 
a massive and dense object (a ship) cannot float, reducing its 
density by artificially increasing its volume, displacing a greater 
amount of water, allows it to float.

Contrary to what is usually believed, therefore, the truth in mathematics has the same origin as in 
physics, both are constructed from interactions with reality. The Greeks verified how they think using 
geometrical constructions, which are abstract mathematical figures that they thought represent real 
objects in their environment. The Pythagoreans did the same with numbers, describing relations (ratio, 
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equality, product, difference, etc.) between objects in their environment. But once the rules of logic 
are empirically confirmed, we can replace these constructions and numbers by their operational 
equivalents. This abstraction process allows mathematical logic to apply now on general objects 
and constructions. This is how it is done in physics. Using mathematics an experience on reality is 
expressed in operational form, and mathematical logic is used to deduce the consequences of new 
interactions. Here is the power of mathematics, extending (like imagination) our actions beyond 
what is presently possible.

But like imagination not all the consequences foreseen by mathematics are realizable, the abstraction 
process itself being limited by physical constraints. Through experiences, some abstract relations 
transform into empirical ones, the “natural laws” of physics revealing new aspects of reality. This 
explains why mathematics always seems to be one step ahead of experimentations in physics. 
Archimedes was well aware of the power of mathematics in physics, claiming: “Give me a fulcrum 
and I will raise the world”.

One important example how mathematics extends our physical reality is related to the proof of 
Euclid’s 5th postulate. Remember that Euclid believed the truth of his postulates to be self-evident. 
But in the case of the 5th one this is far from obvious. The 5th postulate describes in operational 
form the geometric construction of parallel lines. First, draw two lines intersecting a third. Then, 
measure the inner angles on one side. If their sum is different than two right angles, the two lines 
are not parallel; extended sufficiently the two lines will eventually intersect. Many mathematicians 
searched for a proof of the 5th postulate within the Euclidean geometry without success. Then, in 
the 19th century, the great mathematician Gauss (1777-1855) concluded there was none, although 
he did not proved it nor understood what this result meant (Merzbach & Boyer, 2011, p. 495). It 
was Riemann who found the answer in 1854. What he demonstrated to the world was that the 
Euclidean geometry is only one special case of a more general set of possible geometries.

Consider the Pythagorean theorem. What this theorem describes physically is how we measure the 
interval between any two points in space. This is known as the metric and what Riemann showed is 
that this metric depends on the nature of the space. In a 3-dimensional, Euclidean space, the metric 
has the form of a sum of three “infinitesimal” distances, ds2 = dx2 + dy2 + dz2. In general, however, 
the interval takes the form of a 3-manifold:10

 

The Euclidean geometry corresponds to 𝑔11 = 𝑔22 = 𝑔33 = 1 and all the others are 0.

10 The formula on the right is in matrix form, which gives a clearer view of the operational definition: the big matrix being 
an operator as applied to a vector, assuming a space in 3 dimensions.
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But are the other geometries physically real? In Einstein’s relativity space and time are one 
parameter, spacetime, forming a 4-manifold. In Reimann’s geometrical description the metric of 
spacetime implies that 𝑔11 = 𝑔22 = 𝑔33 = 1 and 𝑔44 = –1 (3 terms for space and 1 for time). The 
negative sign for the time corresponds to causality; causes always happen before effects. Now, one 
important characteristic of the n-manifolds discovered by Riemann is that in general the “spaces” 
are not flat, but curved (a sphere is one example). So the Euclidean geometry is flat, but Einstein’s 
spacetime is curved (the negative sign, causality, makes it so), and what Einstein realized is that 
what we understand as the force of gravity is really the curvature of spacetime. Note that we do 
feel gravity, this is far from imperceptible, but we do not see the fourth dimension of spacetime, 
and thus cannot see the curvature. But we can measure it, thus it is real.

So once again, like the irrational number, mathematics points to an extension of reality far beyond 
the perception of our natural senses. But how this extension works really?

The epistemology of mathematics
In their book about the history of mathematics, Merzbach & Boyer refer to the 19th century as 
the golden years. They explain that during these 100 years mathematics increased in abstraction 
by introducing non-Euclidean geometries, n-dimensional spaces, non-commutative algebras, infinite 
processes, and non-quantitative structures. This encouraged David Hilbert (1862-1943) to present 
in 1900 a list of 23 problems that he believed were necessary to complete the process of reducing 
mathematics to an abstract system of axioms. The second problem, in particular, asks for a proof 
that the axioms of arithmetic form a “consistent” system, implying that a finite number of logical 
steps following the axioms can never lead to contradictory results. After many years of intense 
work, a convincing proof was found, but surprisingly it was negative.

In 1931, Kurt Gödel (1906-1978) produced two theorems of incompleteness (Gödel, 1931). The first 
states that no consistent system of axioms can prove the truths of arithmetic on natural numbers, 
because there will always be true statements within the system that cannot be proved by it. In fact, 
the second theorem states that the consistency of the system itself cannot be proved by the system.  
A straightforward interpretation of these theorems is that reducing mathematics to a system of 
axioms is impossible. Note that many mathematicians and philosophers refuse this conclusion, 
pushing the field of what they call meta-mathematics. However, if the truth in mathematics, as 
demonstrated above, comes as in physics from our experiences on reality, then mathematical logic 
is part of our cognitive system, which is open not close, and that would “explain” Gödel theorems. 
The key is epistemology, the theory of knowledge itself.

In 1950, the Swiss psychologist Jean Piaget (1896-1980) published three books about “genetic 
epistemology”, which suggests that intelligence is a construction of the brain based on our 
interactions with reality. Summarizing Piaget’s ideas, intelligence could be defined as—the integration 
of the action of the subject on the object (Piaget, 1950).
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The process of integration is what gives form to logic and mathematics. The model is illustrated in 
figure 1.11 The object in Piaget’s model is “hidden reality”. The term comes from Bernard d’Espagnat’s 
description of reality in quantum mechanics, emphasizing that “reality” is only accessible through 
our interactions with it (D’Espagnat, 2006). This is also the basis of Piaget’s epistemological model. 
In the brain these interactions form psychomotor structures, or patterns of actions on reality. 
Concepts, ideas (or numbers) are not “things” but actions, the operational descriptions of things. 
The coordination of these actions (the lines linking the points in figure 1) is the integration process: 
abstract thinking, logic and mathematics. This process allows the brain to produce an abstract model 
of the world (the cognitive system), which is made of all the actions possible on reality. The goal is 
optimizing our actions on reality in order to increase our chance of survival.

By definition, the construction of these patterns of actions follows a long series of trials and errors. 
As such, therefore, the process is not deterministic, which explains why the set of possible actions 
predicted by this system, in our model, is larger than the set leading to effective interactions with 
reality (not all the points in figure 1 have a vector with origin in reality). But this is also the power 
of such system (the power of imagination), since it must leave a certain degree of liberty (choice 
of actions) for the process to be successful from the point of view of adaptability. On the other 
hand, what determines this adaptability is how successful our actions apply to reality itself. It is this 

11 This is an adaptation of a figure used by Lucio Russo in his book about Greek science (Russo, 2004), to explain how 
intelligence produces new technologies.

Figure 1. Illustration how the cognitive process is connected with reality in Piaget’s model. Each vector represents an interaction 
(set of actions) with reality. These interactions are codified in the brain as patterns of actions (the dots). The relations between 
these patterns (the different branches) are the results of the integration process, which gives form to logic and mathematics.
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bootstrap connection with reality that explains why logical mathematics is not a consistent system, 
because it is open to reality through our experiences.

Since our senses are limited, the model at first is centered on the basic (natural) actions necessary 
for our survival (most animals). However, as our brain develop, the model becomes more complex, 
resulting in more sophisticated actions, related to our cultural behavior. This appears as different 
structures in the brain (Bear, Connors & Paradiso, 2016). In particular, language and symbolic thinking, 
necessary for mathematics, have their own structures, which are more recent than those common 
to all humanoid (Conroy & Pontzer, 2012).  As the density of patterns of actions increases, the model 
becomes more abstract.  As the level of abstraction increases, the coordination process produces 
new patterns of actions falling outside of our natural zone. Those leading to new effective interactions 
with reality are those that Russo identified with the source of new technological abilities. But the 
meaning of these structures goes deeper: it corresponds to an extension of our range of actions 
on reality. Knowledge is the power of our actions on reality. This is what Archimedes meant when 
he said that with the right fulcrum he could raise the world. Knowledge is the fulcrum. 

At the same time changes happen in the mind, corresponding to the integration of the extension 
of reality into our abstract model. Herbert Butterfield (1957) clearly noted this phenomenon in his 
history of modern science. He explained that any advance in science seems to imply a transposition 
in the mind of the scientists. This is not automatic, because a psychological blocking (due to fear, 
anxiety) developed rejecting new models. This explains why new views about nature based on 
science are not automatically accepted. But when this barrier falls down it opens the gate to a 
flood of new experiences and changes.

Conclusions
Comparing with Piaget’s model, therefore, we can now understand the error of Plato when he 
identified logical mathematics with the divine. Plato saw the two aspects of reality, as described in 
Piaget’s model, but inverted their roles, taking the cognitive system, which is the model, as reality. 

Another error would be to claim that the universe is mathematical. The relation is more complicated. 
Mathematics is the symbolism of our actions on reality and as such it is more a part of who we are 
than what the universe really is. The so-called “laws of nature” are more like abstract ways for humans 
to understand nature, by optimizing our actions on reality, than absolute laws that “nature” follows.  

This is Plato’s allegory of the cave: reality is but the shadows of things projected on the wall, and the 
light that reveals them is logic that emanates from the divine. But, in fact, logic is a model built from 
our own interactions with reality and the shadows on the wall are really our images in a mirror.

Based on Piaget’s model, we can conclude that mathematics, as a consequence of the development 
of intelligence, is not as much a tool to extend the power of our actions on reality, as it is a way 
to extend our consciousness. And that is the most important role of mathematics in science and 
in our society.
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