On the journey to find new treatments for idiopathic pulmonary fibrosis

Authors

DOI:

https://doi.org/10.59057/iberoleon.20075316.202440746

Keywords:

aging, idiopathic pulmonary fibrosis, extracellular matrix, cell senescence, quality of life

Abstract

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal disease of unknown etiology. Current therapeutic options often produce significant side effects and fail to reverse the loss of pulmonary function. This article examines recent advances in the development of more effective treatments, highlighting three innovative approaches: (1) drugs that modulate the mechanical signals of the extracellular matrix, critical for fibrosis progression; (2) therapies targeting senescent cells to either eliminate them or mitigate their impact through senolytics and senomorphics; and (3) new compounds in clinical trials, such as an angiotensin II receptor agonist and a Hedgehog pathway inhibitor, which have shown, for the first time, improvements in lung function with minimal side effects. The article links these therapeutic advances to recent molecular discoveries, underscoring the importance of understanding cellular aging mechanisms, such as senescence and mitochondrial dysfunction, in the pathogenesis of IPF. Furthermore, it explores how these findings can translate into safer and more effective pharmacological options. By integrating basic and clinical perspectives, the text provides a comprehensive view of IPF and proposes new therapeutic horizons focused on improving patients’ quality of life. This work contributes to the scientific dialogue on the disease and suggests promising paths for research and treatment.

Downloads

Download data is not yet available.

References

Angelini, A., Trial, J., Ortiz-Urbina, J. y Cieslik, K. A. (2020). Mechanosensing dysregulation in the fibroblast: A hallmark of the aging heart. Ageing Research Reviews, 63, 101150. https://doi.org/10.1016/j.arr.2020.101150.

Angelini, A., Trial, J., Saltzman, A. B., Malovannaya, A. y Cieslik, K. A. (2023). A defective mechanosensing pathway affects fibroblast-to-myofibroblast transition in the old male mouse heart. iScience, 26(8), 107283. https://doi.org/10.1016/j.isci.2023.107283.

Balderas-Martínez, Y. I., Rinaldi, F., Contreras, G., Solano-Lira, H., Sánchez-Pérez, M., Collado-Vides, J., Selman, M. y Pardo, A. (2017). Improving biocuration of microRNAs in diseases: A case study in idiopathic pulmonary fibrosis. Database (Oxford), bax030. https://doi.org/10.1093/database/bax030.

Barratt, S. L., Creamer, A., Hayton, C. y Chaudhuri, N. (2018). Idiopathic pulmonary fibrosis (IPF): An overview. Journal of Clinical Medicine, 7(8), 201. https://doi.org/10.3390/jcm7080201.

Bueno, M., Lai, Y. C., Romero, Y., Brands, J., St Croix, C. M., Kamga, C., Corey, C., Herazo-Maya, J. D., Sembrat, J., Lee, J. S., Duncan, S. R., Rojas, M., Shiva, S., Chu, C. T. y Mora, A. L. (2015). PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. Journal of Clinical Investigation, 125(2), 521-538. https://doi.org/10.1172/JCI74942.

Bueno, M., Calyeca, J., Rojas, M. y Mora, A. L. (2020). Mitochondria dysfunction and metabolic reprogramming as drivers of idiopathic pulmonary fibrosis. Redox Biology, 33, 101509. https://doi.org/10.1016/j.redox.2020.101509.

Burgstaller, G., Oehrle, B., Gerckens, M., White, E. S., Schiller, H. B. y Eickelberg, O. (2017). The instructive extracellular matrix of the lung: Basic composition and alterations in chronic lung disease. European Respiratory Journal, 50(1), 1601805. https://doi.org/10.1183/13993003.01805-2016.

Cabrera, S., Maciel, M., Herrera, I., Nava, T., Vergara, F., Gaxiola, M., López-Otín, C., Selman, M. y Pardo, A. (2015). Essential role for the ATG4B protease and autophagy in bleomycin-induced pulmonary fibrosis. Autophagy, 11(4), 670-684. https://doi.org/10.1080/15548627.2015.1034409.

Cabrera, S., Rodríguez-Bobadilla, C., Vázquez-Morales, D., Gaxiola, M., Maciel, M., Selman, M. y Pardo, A. (2020). Identification of autophagy-related proteins in lungs from hypersensitivity pneumonitis patients. Journal of Histochemistry & Cytochemistry, 68(6), 365-376. https://doi.org/10.1369/0022155420932103.

Cabrera, S., García-Vicente, Á., Gutiérrez, P., Sánchez, A., Gaxiola, M., Rodríguez-Bobadilla, C., Selman, M. y Pardo, A. (2024). Increased ER stress and unfolded protein response activation in epithelial and inflammatory cells in hypersensitivity pneumonitis. Journal of Histochemistry & Cytochemistry, 72(5), 289-307. https://doi.org/10.1369/00221554241251915.

Domínguez, L. J., Veronese, N., Vernuccio, L., Catanese, G., Inzerillo, F., Salemi, G. y Barbagallo, M. (2021). Nutrition, physical activity, and other lifestyle factors in the prevention of cognitive decline and dementia. Nutrients, 13(11), 4080. https://doi.org/10.3390/nu13114080.

Faverio, P., Bocchino, M., Caminati, A., Fumagalli, A., Gasbarra, M., Iovino, P., Petruzzi, A., Scalfi, L., Sebastiani, A., Stanziola, A. A. y Sanduzzi, A. (2020). Nutrition in patients with idiopathic pulmonary fibrosis: Critical issues analysis and future research directions. Nutrients, 12(4), 1131. https://doi.org/10.3390/nu12041131.

Ganslandt, C., Maher, T. M., Molyneaux, P. L., Lindmark, B. E., Raud, J., Tornling, G., Bengtsson, T. y Rosendahl, E. (2024). Buloxibutid, a novel angiotensin II type 2 receptor agonist, stabilized and improved lung function in individuals with idiopathic pulmonary fibrosis in the 36-week Phase 2 AIR trial [Resumen]. American Journal of Respiratory and Critical Care Medicine, 209(1), A1055. https://doi.org/10.1164/ajrccm-conference.2024.209.1_MeetingAbstracts.A1055.

Huang, X., Yang, N., Fiore, V. F., Barker, T. H., Sun, Y., Morris, S. W., Ding, Q., Thannickal, V. J. y Zhou, Y. (2012). Matrix stiffness-induced myofibroblast differentiation is mediated by intrinsic mechanotransduction. American Journal of Respiratory Cell and Molecular Biology, 47(3), 340-348. https://doi.org/10.1165/rcmb.2012-0050OC.

Khor, Y. H., Bissell, B., Ghazipura, M., Herman, D., Hon, S. M., Hossain, T., Kheir, F., Knight, S. L., Kreuter, M., Macrea, M., Mammen, J., Molina-Molina, M., Selman, M., Wijsenbeek, M., Raghu, G. y Wilson, K. C. (2022). Antacid medication and antireflux surgery in patients with idiopathic pulmonary fibrosis: A systematic review and meta-analysis. Annals of the American Thoracic Society, 19(5), 833-844. https://doi.org/10.1513/AnnalsATS.202102-172OC.

Li, W., Kawaguchi, K., Tanaka, S., He, C., Maeshima, Y., Suzuki, E. y Toi, M. (2023). Cellular senescence triggers intracelular acidification and lysosomal pH alkalinized via ATP6AP2 attenuation in breast cancer cells. Communications Biology, 6(1), 1147. https://doi.org/10.1038/s42003-023-05433-6.

López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. y Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194-1217. https://doi.org/10.1016/j.cell.2013.05.039.

López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. y Kroemer, G. (2023). Hallmarks of aging: An expanding universe. Cell, 186(2), 243-278. https://doi.org/10.1016/j.cell.2022.11.001.

Luis-García, E. R., Becerril, C., Salgado-Aguayo, A., Aparicio-Trejo, O. E., Romero, Y., Flores-Soto, E., Mendoza-Milla, C., Montaño, M., Chagoya, V., Pedraza-Chaverri, J., El Hafidi, M., Orozco-Ibarra, M., Pardo, A. y Selman, M. (2021). Mitochondrial dysfunction and alterations in mitochondrial permeability transition pore (mPTP) contribute to apoptosis resistance in idiopathic pulmonary fibrosis fibroblasts. International Journal of Molecular Sciences, 22(15), 7870. https://doi.org/10.3390/ijms22157870.

Maciel, M., Hernández-Barrientos, D., Herrera, I., Selman, M., Pardo, A. y Cabrera, S. (2018). Impaired autophagic activity and ATG4B deficiency are associated with increased endoplasmic reticulum stress-induced lung injury. Aging, 10(8), 2098-2112. https://doi.org/10.18632/aging.101532.

Maher, T. M., Goldin, G. J., DiFrancesco, A., de los Ríos, M., Quito, C., Kim, S., Frohna, P. A. y Hood, J. (2024, 19 de mayo). ENV-101, a novel hedgehog inhibitor, increases lung function, and reduces lung fibrosis in patients with idiopathic pulmonary fibrosis: Results from a randomized, double-blind, placebo-controlled Phase 2 trial [Resumen]. American Journal of Respiratory and Critical Care Medicine, 209(1), A1056. https://doi.org/10.1164/ajrccm-conference.2024.209.1_MeetingAbstracts.A1056.

Mebratu, Y. A., Soni, S., Rosas, L., Rojas, M., Horowitz, J. C. y Nho, R. (2023). The aged extracellular matrix and the profibrotic role of senescence-associated secretory phenotype. American Journal of Physiology. Cell Physiology, 325(3), C565-C579. https://doi.org/10.1152/ajpcell.00124.2023.

Molina-Molina, M. (2008). Clasificación de las enfermedades pulmonares intersticiales difusas: Interpretación clínico-terapéutica y actualización. Medicina Respiratoria, 1(1), 39-47. http://www.neumologiaysalud.es/descargas/R1/R1-5.pdf.

Montes, E., Buendía-Roldán, I., Díaz-Piña, G., Moreno-Ávila, V. y Ruiz, V. (2019). Evaluation of renin and soluble (pro) renin receptor in patients with IPF. A comparison with hypersensitivity pneumonitis. Lung, 197(6), 715-720. https://doi.org/10.1007/s00408-019-00278-5.

Mullard, A. (2022). Pliant’s integrin inhibitor boosted by phase II IPF data. Nature Reviews Drug Discovery, 21(9), 626. https://doi.org/10.1038/d41573-022-00135-w.

Negreros, M., Hagood, J. S., Espinoza, C. R., Balderas-Martínez, Y. I., Selman, M. y Pardo, A. (2019). Transforming growth factor beta 1 induces methylation changes in lung fibroblasts. PLoS ONE, 14(10), e0223512. https://doi.org/10.1371/journal.pone.0223512.

Ortíz-Quintero, B., Buendía-Roldán, I., Ramírez-Salazar, E. G., Balderas-Martínez, Y. I., Ramírez-Rodríguez, S. L., Martínez-Espinosa, K. y Selman, M. (2020). Circulating microRNA signature associated with interstitial lung abnormalities in respiratory asymptomatic subjects. Cells, 9(6), 1556. https://doi.org/10.3390/cells9061556.

Pardo, A., Cabrera, S., Maldonado, M. y Selman, M. (2016). Role of matrix metalloproteinases in the pathogenesis of idiopathic pulmonary fibrosis. Respiratory Research, 17. https://doi.org/10.1186/s12931-016-0343-6.

Pardo, A. y Selman, M. (2021). The interplay of the genetic architecture, aging, and environmental factors in the pathogenesis of idiopathic pulmonary fibrosis. American Journal of Respiratory Cell and Molecular Biology, 64(2), 163-172. https://doi.org/10.1165/rcmb.2020-0373PS.

Qu, J., Yang, S.-Z., Zhu, Y., Guo, T., Thannickal, V. J. y Zhou, Y. (2021). Targeting mechanosensitive MDM4 promotes lung fibrosis resolution in aged mice. Journal of Experimental Medicine, 218(5), Article e20202033. https://doi.org/10.1084/jem.20202033.

Raghu, G., Rochwerg, B., Zhang, Y., Garcia, C. A. C., Azuma, A., Behr, J., Brozek, J. L., Collard, H. R., Cunningham, W., Homma, S., Johkoh, T., Martinez, F. J., Myers, J., Protzko, S. L., Richeldi, L., Rind, D., Selman, M., Theodore, A., Wells, A. U., ... Schünemann, H. J. (2015). An official ATS/ERS/JRS/ALAT clinical practice guideline: Treatment of idiopathic pulmonary fibrosis. An update of the 2011 clinical practice guideline. American Journal of Respiratory and Critical Care Medicine, 192(2), e3-e19. https://doi.org/10.1164/rccm.201506-1063ST.

Schafer, M. J., White, T. A., Iijima, K., Haak, A. J., Ligresti, G., Atkinson, E. J., Oberg, A. L., Birch, J., Salmonowicz, H., Zhu, Y., Mazula, D. L., Brooks, R. W., Fuhrmann-Stroissnigg, H., Pirtskhalava, T., Prakash, Y. S., Tchkonia, T., Robbins, P. D., Aubry, M. C., ... LeBrasseur, N. K. (2017). Cellular senescence mediates fibrotic pulmonary disease. Nature Communications, 8, 14532. https://doi.org/10.1038/ncomms14532.

Schilter, H., Findlay, A. D., Perryman, L., Yow, T. T., Moses, J., Zahoor, A., Turner, C. I., Deodhar, M., Foot, J. S., Zhou, W., Greco, A., Joshi, A., Rayner, B., Townsend, S., Buson, A. y Jarolimek, W. (2019). The lysyl oxidase-like 2/3 enzymatic inhibitor, PXS-5153A, reduces crosslinks and ameliorates fibrosis. Journal of Cellular and Molecular Medicine, 23(3), 1759-1770.https://doi.org/10.1111/jcmm.14074.

Schmauck-Medina, T., Molière, A., Lautrup, S., Zhang, J., Chlopicki, S., Madsen, H. B., Cao, S., Soendenbroe, C., Mansell, E., Vestergaard, M. B., Li, Z., Shiloh, Y., Opresko, P. L., Egly, J. M., Kirkwood, T., Verdin, E., Bohr, V. A., Cox, L. S., Stevnsner, T., ... Fang, E. F. (2022). New hallmarks of ageing: A 2022 Copenhagen ageing meeting summary. Aging, 14(16), 6829-6839.https://doi.org/10.18632/aging.204248.

Torres-Machorro, A. L., Becerril, C., Hernández-Plata, E., Luis-García, E. R., Maldonado, M., Herrera, I., Negreros, M., Hernández-Sánchez, F., Mendoza-Milla, C., Gaxiola, M., Ramírez, R., Pardo, A., Buendía-Roldán, I., Selman, M. y Cisneros, J. (2024). Altered expression pattern of immune response-related genes and isoforms in hypersensitivity pneumonitis lung fibroblasts. Scientific Reports, 14, 24002 (2024). https://doi.org/10.1038/s41598-024-74267-x.

Toscano-Márquez, F., Romero, Y., Espina-Ordóñez, M. y Cisneros, J. (2023). Absence of HDAC3 by matrix stiffness promotes chromatin remodeling and fibroblast activation in idiopathic pulmonary fibrosis. Cells, 12(7), Article 1020. https://doi.org/10.3390/cells12071020.

Zhu, Y., Prata, L. G. P. L., Gerdes, E. O. W., Netto, J. M. E., Pirtskhalava, T., Giorgadze, N., Tripathi, U., Inman, C. L., Johnson, K. O., Xue, A., Palmer, A. K., Chen, T., Schaefer, K., Justice, J. N., Nambiar, A. M., Musi, N., Kritchevsky, S. B., Chen, J., ... Kirkland, J. L. (2022). Orally-active, clinically-translatable senolytics restore α-Klotho in mice and humans. EBioMedicine, 77, 103912. https://doi.org/10.1016/j.ebiom.2022.103912.

Published

2024-12-10

How to Cite

Maldonado Bonilla, M. S. (2024). On the journey to find new treatments for idiopathic pulmonary fibrosis. Entretextos, 16(40), 1–11. https://doi.org/10.59057/iberoleon.20075316.202440746